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Abstract—Facilitating collaboration within a team of robots
poses a challenging question for the field of multi-agent reinforce-
ment learning (MARL) in smart environments. Many existing
cooperative MARL methods utilize centralized or decentralized
frameworks leveraging global or local information for decision-
making without sufficiently considering information exchange
among agents. This research presents an innovative information-
sharing approach for MARL, aiming to enhance collabora-
tion among robots and improve overall team performance in
multi-agent systems. In particular, our approach introduces
an Information Sharing Matrix (ISM) that combines scenario-
independent spatial and environmental information with each
robot’s local observations, thereby enhancing the performance
of individual robots and improving their global awareness
during the MARL learning process. To assess the efficacy of
our approach, we conducted experiments on three cooperative
multi-agent scenarios with varying difficulty levels implemented
in Unity ML-Agents Toolkit. The experimental results indicate
that robots employing our approach have effectively learned
collaborative abilities, enabling them to maximize space coverage
while avoiding conflicts among themselves. The robots utilizing
our ISM-Shared variation outperformed those using decentral-
ized MARL. They achieved performance comparable to robots
employing centralized MARL, where complete global information
is used for decision-making during the execution. Additionally,
our ISM-MARL is adaptable across team sizes and consistently
maintains high performance when transferring knowledge to
teams of varying sizes, without being explicitly learned during
the training phase. This suggests a resilient MARL learning
technique that can adapt to changing environments.

Index Terms—Deep reinforcement learning, multi-agent sys-
tem, information-sharing, cooperative robots, Unity ML-Agent
Toolkit

I. INTRODUCTION

Modern smart environments have transformed into
information-intensive cyber-physical multi-agent systems
(MAS), propelled by the integration of technologies such
as advanced robotics, the Internet of Things (IoT), and
artificial intelligence (AI). In today’s era of the ongoing
industrial revolution, integrating machine learning (ML) and
reinforcement learning (RL) with autonomous robots can

greatly enhance industrial processes in smart environments.
It is possible to devise a multi-agent system framework to
further this integration by modeling an industrial production
setting alongside autonomous robots. Although most RL
research focuses on single-agent automation, there is an
opportunity for enhancement within the realm of multi-agent
smart environments. MARL extends single-agent RL and
provides learning techniques to a group of evolving agents
in cooperative and competitive tasks by maximizing rewards
through agents’ interaction with the environment and among
themselves [1]. In this paper, we propose a MARL framework
with a novel information-sharing mechanism for real-time
task assignments, navigation control, and collaboration of
autonomous robots to improve joint team performance in
dynamic smart environments.

Various challenges emerge when defining problems in the
domain of MARL, and one of these involves effectively
facilitating internal communication among robots. Training
MARL robots solely based on their limited local observations
can easily lead to getting stuck in local optima and may
struggle to learn cooperation in complex smart environments.
Furthermore, within cooperative MASs, robots must act as
a cohesive, coordinated entity to maximize the shared group
reward. A comprehensive grasp of the team’s dynamics and
the surrounding environment around the robots becomes im-
perative to achieve team objectives. Numerous research ini-
tiatives, including those discussed in [2], [3], have addressed
this issue by utilizing extensive information to eliminate the
need for modeling communication among agents. Provid-
ing perfect global information during the RL training phase
is usually called centralized learning. Although centralized
learning can improve team performance, it often requires
substantial computational expenses and may be unavailable
in real-world scenarios. Numerous researchers have focused
on modeling information exchange and communication among
agents within smart environments to bolster team performance
in collaborative tasks [4], [5].



In order to lessen reliance on complete information and pro-
mote team-wide information sharing, we propose the introduc-
tion of a novel multi-layer Information Sharing Matrix (ISM).
This matrix serves as a shared knowledge repository aimed
at augmenting the decision-making abilities of robots engaged
in collaborative tasks within MAS. Furthermore, we present a
variation of ISM called ISM-Shared that combines the local
observations of individual robots in a team to emulate a global
state, particularly in real-world scenarios where complete in-
formation may not be readily accessible. To assess the efficacy
of ISM, we built multiple scenes to simulate warehouse and
office building scenarios where a team of autonomous robots
work together to collect packages while avoiding undesired
objects like trash. To enable our robots to work efficiently
and collaboratively across diverse situations, we employed our
algorithms and trained robots with a carefully designed reward
system as detailed in Section III-A. The robots controlled by
ISM-MARL are trained to take optimal actions, which include
selecting tasks, navigating, and cleaning, in three predefined
scenarios. The results indicate that ISM improves the perfor-
mance of MARL quantitatively with feasible computational
expenditure. The robots employing ISM effectively learned
collaborative skills and in Section IV, we show that robots
utilizing our ISM-Shared approach outperformed those using
decentralized MARL and achieved comparable performance to
robots employing centralized MARL, utilizing complete global
information for decision-making during the execution.

II. RELATED WORK

Several research endeavors are dedicated to incorporating
advanced AI techniques in MAS to achieve autonomous
smart environments as autonomous systems and AI progress.
Deep RL techniques readily apply to modeling challenges
encountered in cooperative or competitive MAS. Li et al.
discussed real-world applications of RL in various fields,
including robotics and transportation [6]. Kober et al. showed
RL application in robotics reduces the need for specific system
engineering [7]. This study focuses on developing distributed
autonomous robots to optimize cooperative tasks using MARL
methods within the context of smart environments, where
multiple trainable agents are considered in interactions. Ex-
tensive research has been done on achieving team goals in
a cooperative MAS using RL algorithms. Early works on
RL methods centered around single-agent domains. Watkins
and Dayan proposed Q-Learning for agents to act optimally
in single-agent Markovian problems [8]. Konda et al. intro-
duced the Actor-Critic (AC) RL algorithm, which combines
the advantages of both Q-Learning and policy gradient to
enhance the RL learning performance [9]. Schulman et al.
proposed the Proximal Policy Optimization (PPO) algorithm,
which outperforms other policy gradient approaches in several
applications [10]. Yu et al. extended the PPO into Multi-
Agent PPO (MAPPO), specializing in multi-agent systems
[11]. This work illustrates the efficacy of a MARL framework
on multiple autonomous robots performing cooperative tasks.
Panait et al. offered a comprehensive overview of cooperative

multi-agent learning. They discussed the challenges of tackling
joint team tasks, highlighting the significance of team learning
and effective communication among learning agents [2]. Li
et al. utilized agents’ communication in cooperative MARL.
The results show that effective inter-agent communication
improved the team learning outcome [3].

In our novel information-sharing approach, we focus on
addressing challenges regarding team learning within the realm
of MARL in smart environments. In our prior experiments, we
enabled inter agent communication through Team Information
Matrix that showcased performance enhancement within smart
environment [12]. In this research, we present ISM, which
employs an encoding technique to significantly reduce the
state space’s dimension and enhance the MARL learning
performance. Li et al. studied cooperative MARL in partially
observable settings [13] and introduced a hierarchical relation
graph to enhance cooperation among agents. However, the
associated computational cost of generating a hierarchical rela-
tion graph far exceeds that of our ISM calculations. Moreover,
ISM’s abstraction of global information, independent of envi-
ronmental parameters, leads to extensive adaptability across
diverse scenarios and varying agent counts. Anthony et al.
have also investigated abstracted global information as a form
of multi-agent influence map [14]–[16] in semi-centralized
MARL settings. Their approach revolves around agents’ global
influence, while our approach centers on combining agents’
local observation in a hierarchical ISM. The convergence
of MARL and intelligent manufacturing was investigated by
Agrawal et al. [17]. They proposed an RL architecture for
autonomous robots where each robot communicates with a
central server for both learning and execution purposes. Fraga-
pane et al. have shown the effectiveness of smart autonomous
mobile robots in the production system of the process industry
[18]. Compared to the above-mentioned works, this study
focuses on applying different information-sharing mechanisms
to enhance the efficiency and collaboration of agents operating
across diverse scenarios in multi-agent environments.

III. METHODOLOGY

In this section, we present our experimental setup con-
structed in Unity to illustrate our multi-agent scenarios and
then provide details of our proposed ISM-MARL approach.

A. Experimental Setup

We formulate the experimental scenarios using Markov
games, an extension of Markov Decision Processes (MDP)
designed for multiple agents, as exemplified in [19], [20]. A
Markov game contains a set of states of the environmental
status and agents’ observations, as well as a set of actions
that the agents could take with immediate rewards from the
environments. In all of our experiments, we employ the nota-
tion of A1, A2, ..., AN to represent the robots’ actions, while
O1, O2, ..., ON signifies the robots’ observations. Here, N
denotes the number of learning robots in a scenario. Each robot
takes an action following a policy π at each environmental step



Fig. 1. ISM Generated from Multi-Agent Scenarios

and earns a reward r, where r represents the state transition
from S to S′ (S × {A1, ..., AN} → S′).

To evaluate the effectiveness of our ISM-MARL approach,
we designed three multi-agent scenarios with various complex-
ity levels. We opted for the Unity ML-Agents Toolkit as our
research platform. Unity ML-Agents Toolkit is an open-source
framework designed for creating and interacting with multi-
agent simulations [21]. In these scenarios, we introduced four
autonomous robots, depicted as blue cubes, to gather packages
and red-colored trash items. In each scene, 25 packages and 10
trashes reappear randomly in the open space at a low speed
after being collected, creating a simulation of a continuous
production environment. This setup facilitates an extended
training period for the multi-agent intelligent environment.
The random reappearance of packages and trashes at different
positions mirrors a dynamic production environment, main-
taining a favorable product-to-trash ratio. The first scenario
simulates an open production warehouse, as illustrated in
Fig. 1a. To investigate the robustness of ISM-MARL, we
added two more variations in the open production area by
incorporating differing quantities of impenetrable walls. The
second scenario, shown in Fig. 1b, features a warehouse
scenario with open space partitioned by two walls. The third
scenario, shown in Fig. 1c, comprises a set of complex walls
and narrow corridors, representing layouts commonly found
in office buildings.

The learning robots, represented by a cube in Fig. 1, can
select a package or trash and navigate autonomously in a
distributed manner with the shared objective of collecting as
many packages and cleaning as much trash as possible in a
given amount of time. Each robot has a sensing area of 20×20
and observes packages, trashes, robots, and walls within their
sensing limit. In the simulation, the robot needs to collide with
package to collect it. To simulate the cleaning task effectively
and to distinguish it from the package collection task, we
equipped each robot with a laser, which is capable of targeting
and “cleaning” red balls and simulates a cleaning action. We
implemented a reward system defined in (1):

R(s) =

 +2 if collect a package
+0.2 if clean a trash
−2 if shoot a robot or collide a trash

(1)

The reward values are selected based on our experimental
results to effectively train our robots. We trained our robots
using PPO and comprehensively compared our ISM-MARL
approaches utilizing global and local observations.

B. ISM-MARL Architecture

The information-sharing MARL architecture is shown in
Fig. 1. Here, we use a three-layer ISM as an input for
the MARL model in our ISM-MARL architecture. The first
layer represents the number of robot information, the second
layer carries the information of packages, and the third layer
contains the number of trashes. Although we have used only
three types of information in our experiments, the ISM can be
easily extended to represent more information to suit various
smart environments. Based on global information availabil-
ity during execution, we formulated two variations: ISM-
Global and ISM-Shared. In ISM-Global, we operate under
the assumption that the system has access to comprehensive
environmental data, including precise object locations obtained
through cameras situated in the production area. In ISM-
Shared, however, the system does not need access to complete
environmental information. ISM-Global and ISM-Shared are
discussed in detail in Section III-B1 and Section III-B2.

Our experiments place the objects in a 100 × 100 unit
square floor. However, incorporating all the data from a 100
× 100 region as input for a MARL model poses a substantial
computational burden for collaborative learning. Furthermore,
in practical smart environments, the operational area for robots
can surpass the dimensions of our simulation, intensifying the
difficulty of inputting data into the MARL model even further.
Therefore, we abstracted the data to a 10 × 10 matrix using
(2) to decrease the computational complexity.

ISM Pos = ⌊
op+ 1

2 × l

d
⌋ (2)

In this equation, op represents the original coordinate of an
object in a given scenario, l denotes the original scene length,
given that the floor has a square shape, and d represents
the new target dimension of each matrix layer of ISM. We
then calculate the new position in ISM for each object and
update their count in their respective two-dimensional layer.
As depicted in Fig. 2, in ISM-MARL, we utilize multi-
ple robots operating with a single shared neural network
within a multi-task learning framework. This setup results in
computational savings during both training and inference, as
only one network needs to be evaluated. Each robot’s local
observation, combined with ISM, forms the input space for
individual robots, guiding their collaborative task selection and
navigation throughout the MARL learning process.

1) ISM-Global: In situations where complete information
is accessible, we calculate ISM using the entirety of the global
state, named as ISM-Global. This involves the continuous ob-
servation of the production area through a central camera unit,
capturing the position and velocity of each robot, package, and
trash in every frame, constituting what we term “complete
global information.” Here, an intermediary controller hub



Fig. 2. ISM-MARL Robot Control Architecture

receives the real-time location data of each object and regularly
updates the ISM. Each robot fetches and utilizes ISM-Global
with its local information via ISM-MARL architecture to
make optimal actions. ISM-Global abstracts comprehensive
environmental information, facilitating the robots’ coopera-
tive learning in MAS. This abstraction notably diminishes
the complexity of the extensive environmental state space,
significantly reducing the processing requirements of multi-
agent reinforcement learning.

2) ISM-Shared: Given the potential limitations in obtaining
complete global information during deployments, particularly
in settings like office buildings where implementing a central-
ized camera system is challenging, we developed the ISM-
Shared model. This model aims to mimic complete informa-
tion by establishing a shared knowledge repository for the
team. In this variation, robots share and upload their individual
observations to a central hub controller, where the ISM-Shared
data is continuously maintained and distributed to all robots
in real-time. This shared information assists them in their
assigned tasks and navigation activities. To summarize, the
difference between ISM-Global and ISM-shared is that, in
ISM-Global, the hub controller receives all the environmental
information, but in ISM-Shared, each robot communicates
with the hub to share its knowledge to calculate ISM.

Algorithm 1 ISM-Shared Generation from Individual Robots

1: ISM [][][]← 3-layer ISM Initialize to 0
2: robots[]← Collect each robot’s observation data
3: for robot in robots[] do
4: RP ← ISM position from robot.position
5: ISM [0][RP.x][RP.y] + +
6: itemList[]← list of item type to track
7: for item in itemList[] do
8: Obj[]← untracked item in robot’s viewpoint
9: matLayer ← designated matrix Layer for item

10: for object in Obj[] do
11: P ← ISM position from object.position
12: ISM [matLayer][P.x][P.y] + +

To further illustrate, in Fig. 1, the circular area surrounding
each robot represents a robot’s observation range. Algorithm 1
outlines the calculation process for constructing ISM-Shared.
After initializing ISM for the shared knowledge among robots,
we iterate over each robot to update the information in ISM.
For each robot, we calculate the position of the ISM using

Equation 2, as stated in line 4 of Algorithm 1. We increment
the value in the position of ISM by 1. Then, in line 6, we
take the type of items to track and their designated matrix
layer information. In our experiments, we tracked only two
types of objects, packages and trashes, and designated the
second and third layers of ISM to represent them. Next, we
iterate over each object from the robot’s observation range and
continue updating the ISM. Subsequently, if a package or trash
is already being tracked and updated in the ISM by another
robot, we remove the object from the robot’s observation list.
Next, we iterate through each package and trash, calculate
their new position in the ISM using Equation 2, and increment
the respective position values by 1. Hence, we can see that
the ISM-Shared implementation computes the ISM exclusively
from locally uploaded observations of individual robots and is
more widely applicable in practice due to its independence
from global information.

IV. RESULTS AND DISCUSSION

We assessed ISM-enabled MARL performance across the
scenarios representing warehouses and office buildings with
varying numbers of walls described in Section III-A. Addi-
tionally, we evaluated the efficacy of our trained models across
these scenarios, considering different quantities of robots. Our
evaluation employed various performance metrics, including
average step reward and average score. In the following
subsections, we present the ISM performance for specific
scenarios.

A. Performance of ISM-MARL on Open Warehouse Scenario

Initially, we examined the teamwork effectiveness of four
robots using Local-MARL, ISM-Global MARL, and ISM-
Shared MARL algorithms, respectively. This evaluation fo-
cused on team-based assignments, specifically tasks related
to collecting packages and cleaning trash within a ware-
house setting characterized by open space, as depicted in
Fig. 1a. Here, Local-MARL denotes a conventional MARL
approach where robots are trained solely through their local
observations, without information sharing among their peers’.
We trained our learning robots up to 2.5 million steps on
three MARL approaches in all three predefined scenarios. As
illustrated in Fig. 3a, robots operating under Local-MARL
demonstrated ongoing learning and steady improvement in
team performance over 2.5 million training steps. Notably,
the peak average reward attained by Local-MARL reached
120 across 11 distinct runs with varied random seeds. Note
that packages and trashes consistently respawn immediately
after being consumed in simulated scenarios for an extended
duration of MARL training and execution. In this context,
the results indicate that the robots can achieve local optimal
with high performance without information sharing. Next,
we enabled information-sharing mechanisms among robots
to further enhance the overall performance of a team. We
integrated both ISM-Global with abstracted global informa-
tion and local observations into the robots’ decision-making
process to help promote the discovery of team objectives and



(a) Avg. Reward on Warehouse Scenario with Open Space (b) Avg. Reward on Warehouse Scenario with Simple Walls (c) Avg. Reward on Office Building Scenario with Walls

Fig. 3. Results of MARL Learning across Scenarios during Training
TABLE I

MAXIMUM AVERAGE REWARD DURING TRAINING

Method Open Space Simple Walls Complex Walls
Local-MARL 120 101 86

ISM-Global MARL 139 105 95
ISM-Shared MARL 132 101 98

global awareness. We abstracted the perfect global information
in a three-dimensional matrix as described in Section III and
trained our neural networks using the combination of ISM-
Global and local observation in the warehouse scenario. As
shown in Fig. 3a, the robots utilizing ISM-Global outper-
formed the Local-MARL significantly. The maximum average
reward reached 139, which is 16% higher than the Local-
MARL performance. This indicates that the ISM derived from
global information is certainly enhancing the robots’ ability to
work collaboratively in decision-making. We further evaluated
the performance of robots using ISM-Shared MARL, consid-
ering the fact that complete information might not always be
available in real-world applications. ISM-Shared is integrated
from all the robots’ local observations and used to imitate
the global information for MARL learning. Fig. 3a shows our
ISM-Shared robots outperformed the robots using only local
observations by almost 10% and achieved a maximum average
reward of approximately 132.

B. Performance of MARL on Scenarios with Walls

Fig. 3b shows that Local-MARL robots successfully learned
to work collaboratively with each other and achieved the
maximum average reward of 101 in Fig. 1b scenario featuring
warehouses with open space. In contrast to the peak score of
120 achieved in the open warehouse scenario, the introduction
of walls and obstacles resulted in a diminished performance.
Despite this, the robots continued to acquire collaborative
task-solving skills, albeit with reduced efficiency. We further
evaluated the Local-MARL robots in the most complex office
building scenario where the area is partitioned into various
rooms and corridors by 7 distinct walls, as illustrated in
Fig. 1c. As depicted in Fig. 3c, the robots exhibited progres-
sive performance enhancement over the training period and
achieved a peak average reward of 86, nearly 72% of the
reward obtained in the warehouse scenario with open space.

TABLE II
GENERALIZABILITY ON VARYING NUMBER OF ROBOTS (50,000 STEPS)

Team Scenario Method Package Trash inc (%)

3 Robots
(Unseen)

Open
Warehouse

Local 164.60 3.80 -
ISM-Global 181.20 0.00 9.91
ISM-Shared 213.00 3.60 30.34

Simple
Walls

Local 110.30 1.40 -
ISM-Global 151.40 0.20 37.96
ISM-Shared 113.40 2.40 4.60

Office
Buildings

Local 60.60 2.40 -
ISM-Global 80.00 0.20 29.16
ISM-Shared 85.00 5.40 44.16

5 Robots
(Unseen)

Open
Warehouse

Local 290.40 3.40 -
ISM-Global 335.40 0.00 14.56
ISM-Shared 232.71 1.86 14.04

Simple
Walls

Local 206.20 0.80 -
ISM-Global 209.80 0.40 2.98
ISM-Shared 220.00 5.20 7.44

Office
Buildings

Local 116.60 4.40 -
ISM-Global 146.80 1.20 22.61
ISM-Shared 165.00 13.6 46.96

As Local-MARL performance deteriorated with the in-
creasing complexity of the wall, we wanted to explore how
ISM-Global and ISM-Shared perform in comparison. Here,
the robots utilizing ISM-Global achieve a maximum average
reward of 105 which is 4% higher than Local-MARL. In the
office building scenario with complex walls, the maximum
average reward is 78 which is 10% greater than the local ob-
servation. For the robots with ISM-Shared MARL, in the ware-
house scenario with simple walls, there was minimal variation
between Local-MARL and ISM-Global MARL. Nonetheless,
the robots utilizing ISM-Shared MARL demonstrated no-
table enhancement in navigating the intricate walls of the
office building scenario, surpassing the performance of Local-
MARL and nearly matching the effectiveness of the ISM-
Global approach. Our ISM-Shared approach outperformed
local observation by 14% and reached the maximum average
reward of 98. Table I elaborates the comparison of maximum
average reward across all three scenarios during the training
process and we can see that the ISM-Global approach is best
performed across all three scenarios in training. Nonetheless,
the ISM-Shared approach outperforms local-MARL greatly
and shows a very close performance compared to ISM-Global.



(a) Avg. Score on Warehouse Scenario with Open Space (b) Avg. Score on Warehouse Scenario with Simple Walls (c) Avg. Score on Office Building Scenario with Walls

Fig. 4. Evaluation Results of Average Score attained per Robot utilizing MARL Methods across Scenarios with Varying Numbers of Co-operative Robots

C. Evaluation of the Best Performed Robots

After the training phase of the four-robot team across
scenarios with three different difficulty levels, we chose the
top-performing neural network models utilizing Local-MARL,
ISM-Shared, and ISM-Global MARL in all three scenarios
for assessment. Furthermore, to evaluate the generalizability
of learned models, we examined robots trained with scenarios
involving four robots and tested them with varying numbers of
robots, gauging the adaptability and generalizability of a robot
operating with an unseen team size. Table II detailed the results
collected on each MARL method undergoing 50,000 steps.
For each combination of scenario, method, and team size,
we observed the average number of packages collected, trash
cleaned, cumulative team score, and the percentage increase
in score from Local-MARL to ISM-MARL approaches. In
the open warehouse scenario as shown in Fig. 4a, each robot
achieved an average score of 100 when collaborating with a
team of four robots. However, robots utilizing ISM-Global
and ISM-Shared achieved average scores of 117 and 134,
respectively, representing a 25% improvement in performance
on average with ISM-MARL approaches. Similarly, in the
scenario with simple walls described in Fig. 4b, robots trained
with Local-MARL in four robot teams attained 76 for each
robot, whereas those utilizing ISM-Global and ISM-Shared
achieved scores of 94 and 88, respectively, reflecting a 20%
performance improvement. Furthermore, in the office building
scenario as illustrated in Fig. 4c, Local-MARL four robot
teams scored 48 points for each robot, while ISM-Global and
ISM-Shared robots achieved 63 and 86 points, respectively.
This represents a 48% improvement in performance with
ISM-MARL approaches over Local-MARL. Overall, our ISM-
MARL outperformed robots with only local observations by
26% on average. In addition, the ISM-Shared MARL model
showcased superior performance over ISM-Global in most ex-
perimental setups and demonstrated comparable performance
in other cases. Given that ISM-Shared operates independently
of complete information, the evaluation results suggest its
adaptability in diverse MASs. Fig. 4 also demonstrates that,
despite being trained to collaborate within a team consisting
of only 4 robots, our ISM-MARL methods consistently out-
perform when applied to smaller teams, such as 3 robots, and
larger teams, such as those comprising 5 robots. In the open

warehouse scenario with a team of three robots, the ISM-
Global method surpassed the baseline local MARL by 9.91%,
while the ISM-Shared method outperformed the baseline by
30.34%. Similarly, the robot team consistently outperformed
the baseline in the other two scenarios by an average of
13% and 36%, respectively. Furthermore, our experimental
results with a team of five robots also exhibit a similar trend.
As shown in Table II, ISM-MARL methods outperform the
baseline in the open warehouse, simple walls, and office
buildings scenarios by an average of 14%, 5%, and 32%,
respectively. The evaluation result suggests that our ISM rep-
resentation is scenario-independent and capable of adapting to
function effectively across various team sizes. This highlights
the capability of ISM-MARL approaches to maintain high-
performance levels despite fluctuations in the workforce. In
real-world production scenarios, where robots may be added or
removed for various reasons, a MARL approach necessitating
additional training each time the environment setting slightly
changes would incur production overhead. Thus our robust
ISM-MARL approach can effectively improve the overall
performance with fewer training initiatives.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel Information Sharing Matrix
(ISM) designed to facilitate inter-agent communication. We
integrate this matrix with local observations to efficiently
guide robots in learning collaborative tasks within intricate
multi-agent smart environments. We conducted experiments on
diverse multi-agent scenarios of varying difficulty levels and
experimental results demonstrated that our robots successfully
collaborated in both simple and complex scenarios. Moreover,
the ISM-enhanced MARL consistently exhibited performance
improvements and outperformed local models across teams
comprising different numbers of robots. In the future, we plan
to include transfer learning to evaluate the performance of our
trained models with new space information and investigate
the efficacy of ISM in maximizing team objectives to promote
the generalization and robustness of MARL. Furthermore, we
intend to investigate the role of human intervention during
the training of collaborative robots and its influence on per-
formance outcomes. Additionally, we plan to investigate the
outcome of our MARL model in dynamic training environ-
ments and assess the efficacy of the training robots
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